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In this paper, a method to determine the effective electrical conductivity of composite constituted of two distinct phases with
different physical property is presented. The conductive particles are randomly distributed in the thermoplastic polymer matrix.
Homogenization method based on the equivalent representative volume is used to calculate the effective electrical conductivity. Results
are then compared with analytical models based on the inclusion problem of Eshelby. The percolation threshold of the electrical
conductivity is then discussed.
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I. INTRODUCTION

DUE to their excellent mechanical properties, carbon
graphite composite materials are widely used in aero-

nautic applications. These materials are asked to meet new
functionalities such as good electrical conductive properties to
convey current and replace metallic material. The conception
of these materials needs numerical modeling to evaluate the
percolation threshold regarding the different distributions of
phases. In this paper, the studied composite material consists
of a polymer matrix and graphite inclusion of few tenth of
micrometer. An example of such a composite is shown in
Fig. 1. The electrical properties of these composite strongly
depend on the volume fraction of inclusions and the random
inclusions distribution in the micro structure. Moreover, as
the matrix is poorly conductive, the electrical properties in
these composite is closely related to the connectivity of the
particles. Due to the high scale factor between the composite
size and inclusion size, homogenization methods have to be
used. These methods have to take into account the specific
distribution of inclusions and the high electrical conductivity
contrast between the inclusions and the matrix. The purpose of
this paper is to deduce the effective electrical conductivity of a
homogeneous equivalent material using the physical properties
of these composites components. Moreover, the influence of the
inclusions distribution and the electrical conductivity contrast
will be studied.In this paper, homogenization approach is
proposed using the method of equivalent representative volume.
The results obtain by this method will be compared with
analytical results given by Maxwell Garnett and Bruggeman
model based on inclusion problem of Eshelby.

II. PROPOSED MODELING METHODOLOGY

Modeling of heterogeneous composite materials is very com-
plex; therefore we propose analytical and numerical methods to
model the effective electrical conductivity. The limitations and
the potential problems of these methods will be distinguished.

A. Analytical Modeling
The most widely used analytical models to estimate the

effective electrical conductivity of disordered mixture derived

Fig. 1. Scanning electron microscope picture of carbon graphite mixed with
thermoplastic matrix. Carbon graphite inclusions are the scale of micrometer.

from the inclusion problem Eshelby [1]. The method for
homogenizing the inclusion problem are based on solving a
submerged inclusion in an infinite medium, both isotropic
electrical conductivity σi and σref respectively. The electric
field in the inclusion Ei (1) [2] is assumed linear, homogeneous
and deducted from the field applied Eo

(1)Ei = [(I +Ni σ
−1
ref (σi − σref )))−1] Eo

The effective behavior of a heterogeneous medium can be
defined through the definition of its current density J by
equation (3).By overlaying the n problems of inclusion (Fig.2.),
we deduce the effective electrical behavior of the composite by
equation (2) [2].

(2)
σeff =

n∑
i=1

〈
(fiσi[I +Ni σ

−1
ref (σi − σref )]−1)

〉
·
〈

[(I +Niσ
−1
ref (σi − σref ))−1]−1

〉
(3)J = σeff E

where Ni is the depolarization tensor, I the identity tensor,
fi the i inclusion volume fraction, and n number phases i (see
Fig. 2.).

Therefore, with a judicious choice of the reference medium,
the model can take into account the inter-inclusions interactions
and theirs geometry. However, Maxwell Garnett [3], [4] and
Bruggeman [5] models deduce in the inclusion problem, will
be studied more closely.



Fig. 2. Homogenization model based on problems of inclusion Eshelby.

B. Numerical Modeling

Due to the complex nature of composites (inclusion with
different shapes and sizes, random distribution of these inclu-
sions and large scale factor) direct modeling is impossible.
It is then necessary to use a homogenization technique which
takes into account these difficulties. The real material is divided
into N representative volumes as shown in Fig.2a. The size of
these volumes is selected to contain enough particles to be
statistically representative of the overall volume while keeping
an acceptable computational complexity. In order to generate
a representative volume, it is meshed with regular elements
of small sizes whose electrical properties are affected by a
random algorithm (Monte Carlo) to satisfy the fill rate and
law distribution. Fig. 2b shows an example of construction
of a representative volume with a uniform distribution of the
inclusion. The size of inclusion is a few tens of micrometers
and the filling rate is 80%. This geometry generation algorithm
is launched P times in order to have a satisfactory confidence
interval. For each cells, electrokinetics finite element simula-
tion is done to calculate the electrical conductivity by imposing
a current source. The formulation is given by:

(4)


div([σ] ~grad(V) = 0 (Ω)

[σ]
(

dV
dn

)
= ±Js (Γ1)

[σ]
(

dV
dn

)
= 0 (Γ1),

where σ is the electrical conductivity tensor, V the electrical
potential and (Γ1 ) the electrode boundary. The electrical
conductivity is calculated knowing the source current, the cells
dimension and the mean value of electrical potential in each
electrode. The P simulations can to obtain the confidence
interval of the electrical conductivity. In the final section the
methodology evaluation of the size unit cell and the number
of draws necessary P will be explained.

Fig. 3. 2D representation of the numerical model geometry (Black: inclusions,
White: polymer matrix and Blue: the electrodes).

III. RESULTS

The analytical and numerical methodology was applied
to a two-phase heterogeneous micro structure. The phases
are uniformly distributed with in the material and the mean
size of particles is 10 micrometer. Fig.3 and Fig.4 show the
effective electrical conductivities obtained for 10 simulations
with random inclusions position for each volume fraction.
Both variation of this volume fraction leads a low variation
of electrical conductivity. After, the percolation threshold is
reached; we can observe a high correlation between the volume
fraction and the conductivities.

Fig. 4. Effective electrical conductivity and bounds as a function of volume
fraction of theoretical mode.

Fig. 5. Effective electrical conductivity as a function of volume fraction of
Bruggeman theoretical model compared with FEM results.

In this paper, a homogenization method based on equivalent
representative volume is proposed and give good results in
comparison with analytical method. The effect of percolation
threshold is perfectly simulated. The proposed method takes
into account the specificities of composite materials: random
distribution, large scale factor, different sizes and shapes of
inclusions. In the final paper, the integration of different shapes
and distribution of inclusions will be more detailed. In the case
of elongated particles, the influence of their orientations will
be discussed.
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